
kreator

solutions for additive manufacturing

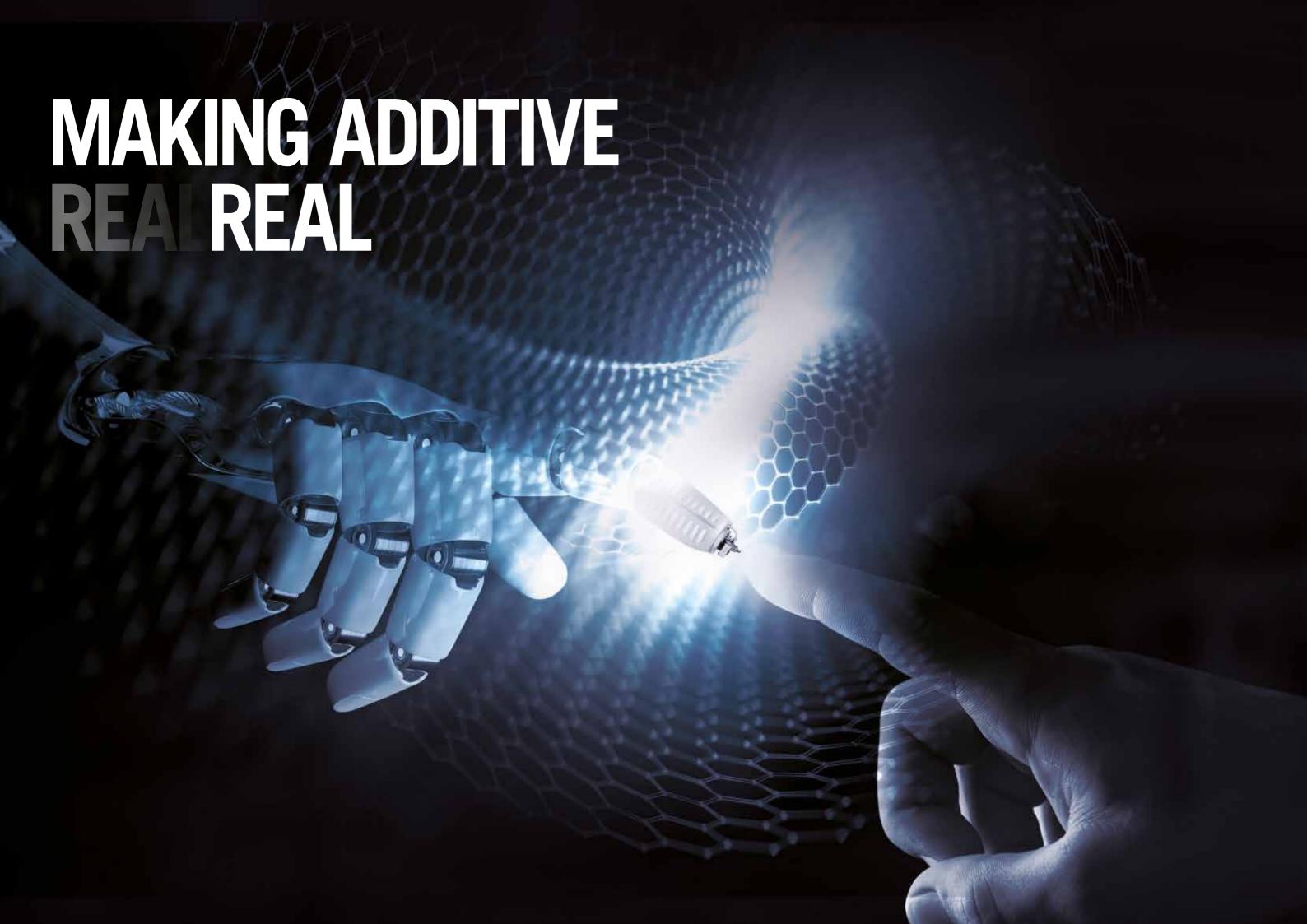
CMS is part of SCM Group, a technological world leader in processing a wide range of materials: wood, plastic, glass, stone, metal, and composites. The Group companies, operating throughout the world, are reliable partners of leading manufacturing industries in various market sectors, including the furniture, construction, automotive, aerospace, ship-building, and plastic processing industries. SCM Group coordinates, supports, and develops a system of industrial excellence in three large, highly specialized production centers employing more than 4,000 workers and operating in five continents. SCM Group: the most advanced skills and know-how in the fields of industrial machinery and components.

CMS SpA manufactures machinery and systems for the machining of composite materials, carbon fiber, aluminum, light alloys, plastic, glass, stone, and metals. It was established in 1969 by Mr Pietro Aceti with a vision of offering customized and state-of-the-art solutions, based on the in-depth understanding of the customer's production needs. Significant technological innovations, originating from substantial investments in research and development and take-overs of premium companies, have enabled constant growth in the various sectors of reference.

advanced materials technology

CMS Advanced Materials Technology is a leader in the field of numerically controlled machining centers for the working of advanced materials: composites, carbon fiber, aluminum, and light alloys. Substantial investments in research and development have allowed the brand to always be on the forefront of cutting-edge design, with machines that ensure best-in-class performance in terms of accuracy, speed of execution, and reliability; meeting the needs of customers operating in the most demanding divisions.

Since the early 2000s, **CMS Advanced Materials Technology** has established itself as a technology partner in areas of excellence such as aerospace, aviation, automotive, race boating, Formula 1, and the most advanced railway industry.


kreator

APPLICATIONS	6-7
CMS KREATOR	8-9
EXTRUSION UNITS	10
PRINT SOLUTIONS	11
HYBRID SOLUTIONS	12
HYBRID DOUBLE BRIDGE SOLUTIONS	13
ICARUS SOFTWARE	14
DEDICATED PRINT INTERFACE HMI	15
CASE STUDIES	16-17
THE RANGE	18-19

scm@group industrial machinery and components

APPLICAZIONI

CMS KREATOR

CMS, a pioneer in CNC machines for materials processing, began developing innovative Large Format Additive Manufacturing (LFAM) solutions in 2018 to enhance the competitiveness of the composite and tooling industries.

Large Format Additive Manufacturing

Large Format Additive manufacturing (LFAM) using screw extrusion of thermoplastic pellets is a rapidly growing technology for producing composite tooling. Applications include CFRP autoclave layup molds, master molds, trimming jigs, and machining vacuum fixtures. Reduced lead times, material savings, and recyclability make LFAM a competitive alternative to conventional technologies for tool manufacturing.

KEY BUYERS BENEFITS

TAILORED SOLUTION: CMS PROVIDE SPECIALIZED LFAM SOLUTIONS EXCLUSIVELY FOR 3D PRINTING, AS WELL AS ADVANCED HYBRID SYSTEMS THAT SEAMLESSLY INTEGRATE

MATERIAL SAVING: NEAR NET SHAPE TOOL MANUFACTURING UP TO 80% MATERIAL AND WEIGHT SAVING COMPARED TO CONVENTIONAL TECHNOLOGIES

3D PRINTING

BUMPER LAMINATION MASTER MOLD AUTOMOTIVE

Material: ABS + 20% carbon fiber **Size**: 900 x 1000 x 400 mm

Weight: 50 kg

Autoclave curing temperature: 60 °C

Printing time: 9 hours Wall thickness: 16 mm **Machining time**: 18 hours

Material saving: 50%

EXTRUSION UNITS

With its comprehensive range of extrusion units, CMS can provide the solution that best suits the customer's application. The extrusion units are engineered for optimal processing of a wide range of thermoplastic polymers used in large-scale 3D printing, including carbon and glass fiber reinforced PLA, PETG, ABS, PA6, PC, PEI, and more. The material loading system integrates granule drying and dust filtration to ensure a high-quality product.

EXTRUDER **E1**

EXTRUDER E3

EXTRUDER **E10**

	EXTRUDER E1	EXTRUDER E3	EXTRUDER E10
SCREW DIAMETER	20 mm	25 mm	35 mm
MAX FLOW RATE	10 kg/h	30 kg/h	100 kg/h
HEATING ZONES	5	5	6
MAX TEMPERATURE	450 °C	450°C	430 °C
COOLING	Forced air	Liquid	Liquid
NOZZLE SIZES	8 – 13 mm	10 – 15 mm	12 – 20 mm
MELT SENSORS	Temperature and pressure	Temperature and pressure	Temperature and pressure
DRYER CAPACITY	80 I	120 I	600 I

PRINT SOLUTIONS

	KREATOR A3	KREATOR M10	
PROCESS	Additive Manufacturing	Additive Manufacturing	
EXTRUDER UNIT	E3 (30 kg/h)	E10 (100 kg/h)	
PRINT STRATEGIES	Vertical and 45°	Vertical and 45°	
X AXIS	2.500 – 9.800 mm	3000 – 10.500 mm	
Y AXIS	2.500 mm	4.000 mm	
Z AXIS	1.300 mm 1.600 mm		

10

HYBRID SOLUTIONS

AUTOMATIC SWITCH FROM MILLING TO PRINTING WITHOUT MANUAL INTERVENTION

	KREATOR ARES	KREATOR POSEIDON	
PROCESS	5-axis milling + 5-axis milling + Additive Manufacturing Additive Manufacturing		
EXTRUDER UNIT	E1 (10 kg/h) E1 (10 kg/h)		
EXTRUDER ENGAGEMENT	Automatic head change	Automatic head change	
PRINT STRATEGIES	Vertical, 45° and horizontal Vertical and 45°		
X AXIS	3.400 - 5.800 mm	4.000 - 10.000 mm	
Y AXIS	2.000 mm	3.400 mm	
Z AXIS	1.100 mm	1.300 mm	
SPINDLE	20 kW	20 kW	

HYBRID DOUBLE BRIDGE SOLUTIONS

KREATOR MX5 10, POSEIDON 10 and ETHOS 10

	KREATOR MX5 10	KREATOR POSEIDON 10	KREATOR ETHOS 10
PROCESS	5-axis milling + Additive Manufacturing	5-axis milling + Additive Manufacturing	5-axis milling + Additive Manufacturing
EXTRUDER UNIT	E10 (100 kg/h)	E10 (100 kg/h)	E10 (100 kg/h)
EXTRUDER ENGAGEMENT	Second bridge	Second bridge	Second bridge
PRINT STRATEGIES	Vertical and 45°	Vertical and 45°	Vertical and 45°
X AXIS	3.000 - 12.500 mm	4.000 - 13.000 mm	4.000 - 13.000 mm
Y AXIS	4.250 mm	4.000 mm	4.000 mm
Z AXIS (MILL)	2.000 mm	2.000 mm	2.000 mm
Z AXIS (PRINT)	1.600 mm	1.600 mm	1.600 mm
SPINDLE	12 - 32 kW	12 - 32 kW	18 - 32 kW

13

12

DISCOVER ICARUS!

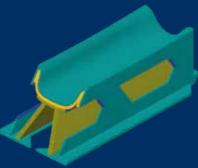
EASE OF USE

GENERATE PRINTING PARAMETERS AUTOMATICALLY

The software analyzes the part geometry, properties of the printed strand and selected material, and automatically suggests the best printing parameters.

CREATE PROJECTS WITH SIMPLIFIED 3D MODELS

Projects can be developed and modofied using elementary geometric shapes..


PRODUCT-ORIENTED SOFTWARE

CREATE PARAMETRIC MODELS

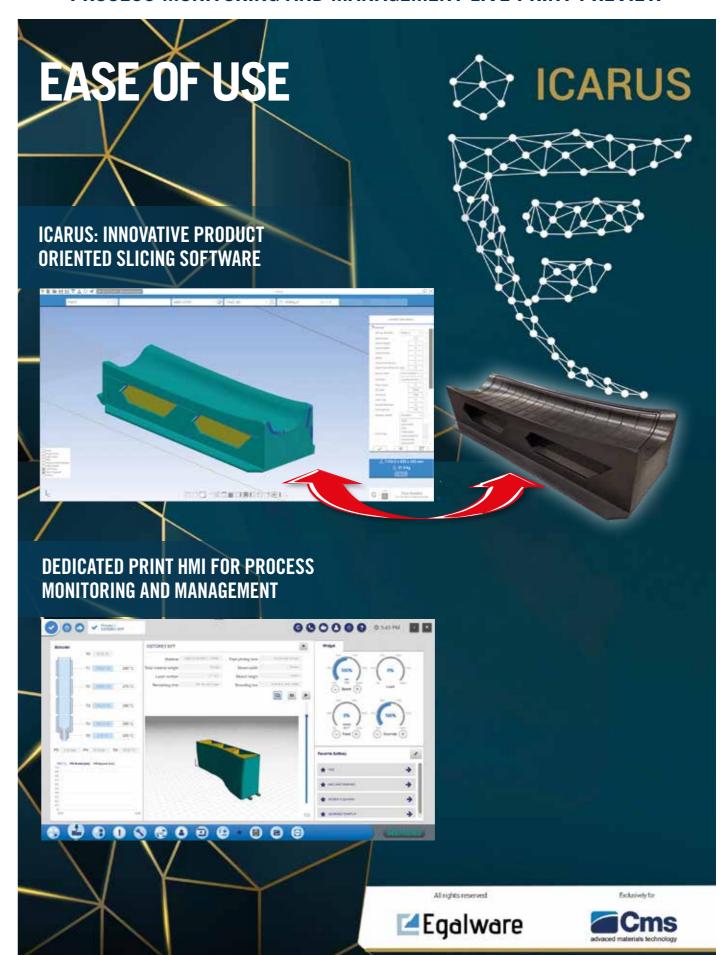
Templates can be created for various materials, printing strategies and applications.

EXCLUSIVE FEATURES

Create internal reinforcement structures, reduction zones and upports for critical areas.

PROCESS SIMULATION

AS 3D PRINTED MODEL


Export the 3D model generated, which exactly represents the final printed result.

CONTINUOUS ANALYSIS

The 3D model can be used to analyze printed thicknesses and, with the aid of specific software, perform structural analysis.

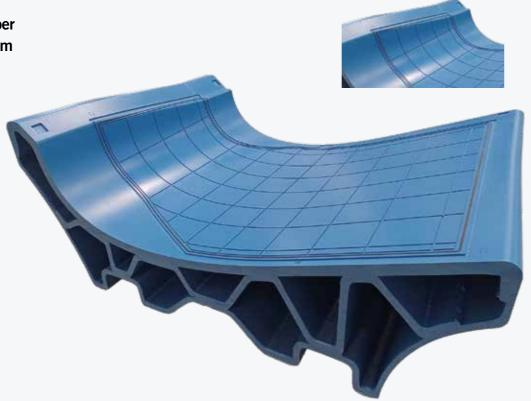
DEDICATED PRINT INTERFACE HMI

PROCESS MONITORING AND MANAGEMENT LIVE PRINT PREVIEW

CASE STUDIES

CFRP ANTENNA REFLECTOR FOR DEFENSE SYSTEM

CFRP MACHINING VACUUM FIXTURE


AEROSPACE

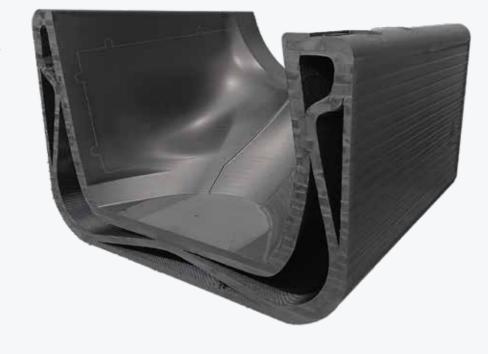
Material: **PC + 20% glass fiber** Size: **2200 x 1500 x 900 mm**

Weight: 470 kg

Printing time: **26 hours**Wall thickness: **40 mm**Machining time: **12 hours**

HIGH TEMPERATURE LAMINATION MOLD

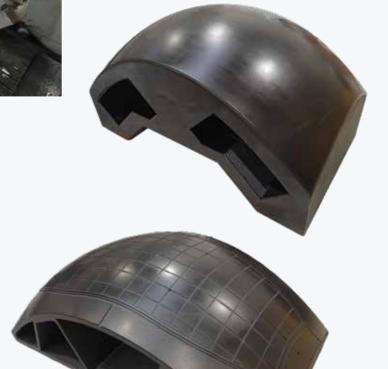
AEROSPACE


Material: **PEI + 20% carbon fiber** Size: **1200 x 900 x 1000 mm**

Weight: 190 kg

Autoclave curing temperature: 170 °C

Printing time: **8 hours**Wall thickness: **36 mm**Machining time: **24 hours**


MACHINING VACUUM FIXTURE

Material: **ABS + 20% carbon fiber** Size: **1400 x 750 x 500 mm**

Weight: 110 kg

Printing time: **12 hours**Wall thickness: **20 mm**Machining time: **9 hours**

17

CMS ADVANCED MATERIALS TECHNOLOGY RANGE OF MACHINES

FOR COMPOSITE MATERIALS, ALUMINUM AND METAL PROCESSING

KREATOR ARES

ETHOS CONCEPT HYBRID ADDITIVE MANUFACTURING MONOBLOC CNC MACHINING CENTERS **AND MILLING SYSTEMS** FOR HORIZONTAL MILLING

IKON

